Quantum transport in fractal networks (2024)

  • Mandelbrot, B. B. Fractals: Form, Chance and Dimension (W. H. Freeman, 1977).

  • ben-Avraham, D. & Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems (Cambridge Univ. Press, 2000).

  • Mandelbrot, B. B. The Fractal Geometry of Nature (W. H. Freeman, 1983).

  • Gouyet, J.-F. Physics and Fractal Structures (Springer, 1996).

  • Ivanov, P. C. et al. Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999).

    Article ADS Google Scholar

  • Bandres, M. A., Rechtsman, M. C. & Segev, M. Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys. Rev. X 6, 011016 (2016).

    Google Scholar

  • Tanese, D. et al. Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential. Phys. Rev. Lett. 112, 146404 (2014).

    Article ADS Google Scholar

  • Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    Article ADS Google Scholar

  • Brady, R. & Ball, R. Fractal growth of copper electrodeposits. Nature 309, 225–229 (1984).

    Article ADS Google Scholar

  • Goldberger, A. L. et al. Fractal dynamics in physiology: alternations with disease and aging. Proc. Natl Acad. Sci. USA 99, 2466–2472 (2002).

    Article ADS Google Scholar

  • Bassingthwaighte, J. B., Liebovitch, L. S. & West, B. J. Fractal Physiology (Springer, 2013).

  • Peters, E. E. Fractal structure in the capital markets. Financ. Anal. J. 45, 32–37 (1989).

    Article Google Scholar

  • Dean, C. R. et al. Hofstadteras butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article ADS Google Scholar

  • Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 350, 1231–1234 (2015).

    Article ADS MathSciNet MATH Google Scholar

  • Benedetti, D. Fractal properties of quantum spacetime. Phys. Rev. Lett. 102, 111303 (2009).

    Article ADS MathSciNet Google Scholar

  • Karman, G., McDonald, G., New, G. & Woerdman, J. Fractal modes in unstable resonators. Nature 402, 138 (1999).

    Article ADS Google Scholar

  • Dudley, J. M., Finot, C., Richardson, D. J. & Millot, G. Self-similarity in ultrafast nonlinear optics. Nat. Phys. 3, 597–603 (2007).

    Article Google Scholar

  • Rivera, J. A., Galvin, T. C., Steinforth, A. W. & Eden, J. G. Fractal modes and multi-beam generation from hybrid microlaser resonators. Nat. Commun. 9, 2594 (2018).

    Article ADS Google Scholar

  • Ding, J., Fan, L., Zhang, S.-Y., Zhang, H. & Yu, W.-W. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve. Sci. Rep. 8, 1481 (2018).

    Article ADS Google Scholar

  • Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).

    Article ADS Google Scholar

  • Fazio, B. et al. Strongly enhanced light trapping in a two-dimensional silicon nanowire random fractal array. Light Sci. Appl. 5, e16062 (2016).

    Article Google Scholar

  • Gottheim, S., Zhang, H., Govorov, A. O. & Halas, N. J. Fractal nanoparticle plasmonics: the Cayley tree. ACS Nano 9, 3284–3292 (2015).

    Article Google Scholar

  • De Nicola, F. et al. Multiband plasmonic Sierpinski carpet fractal antennas. ACS Photonics 5, 2418–2425 (2018).

    Article Google Scholar

  • Zhu, L.-H. et al. Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal. Opt. Express 21, A313–A323 (2013).

    Article Google Scholar

  • Havlin, S. & Ben-Avraham, D. Diffusion in disordered media. Adv. Phys. 36, 695–798 (1987).

    Article ADS Google Scholar

  • Blumen, A., Klafter, J., White, B. & Zumofen, G. Continuous-time random walks on fractals. Phys. Rev. Lett. 53, 1301 (1984).

    Article ADS Google Scholar

  • Alexander, S. & Orbach, R. Density of states on fractals: fractons. J. Phys. Lett. 43, 625–631 (1982).

    Article Google Scholar

  • Orbach, R. Dynamics of fractal networks. Science 231, 814–819 (1986).

    Article ADS Google Scholar

  • Ben-Avraham, D. & Havlin, S. Diffusion on percolation clusters at criticality. J. Phys. A Math. Gen. 15, L691 (1982).

    Article ADS Google Scholar

  • Sokolov, I. M. What is the alternative to the Alexander–Orbach relation? J. Phys. A Math. Theor. 49, 095003 (2016).

    Article ADS MathSciNet MATH Google Scholar

  • Reis, F. D. A. & Voller, V. R. Models of infiltration into hom*ogeneous and fractal porous media with localized sources. Phys. Rev. E 99, 042111 (2019).

    Article ADS Google Scholar

  • Mülken, O. & Blumen, A. Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502, 37–87 (2011).

    Article ADS MathSciNet Google Scholar

  • Agliari, E., Blumen, A. & Mülken, O. Dynamics of continuous-time quantum walks in restricted geometries. J. Phys. A Math. Theor. 41, 445301 (2008).

    Article ADS MathSciNet MATH Google Scholar

  • Darázs, Z., Anishchenko, A., Kiss, T., Blumen, A. & Mülken, O. Transport properties of continuous-time quantum walks on Sierpinski fractals. Phys. Rev. E 90, 032113 (2014).

    Article ADS Google Scholar

  • Volta, A. Quantum walks and trapping on regular hyperbranched fractals. J. Phys. A Math. Theor. 42, 225003 (2009).

    Article ADS MathSciNet MATH Google Scholar

  • van Veen, E., Yuan, S., Katsnelson, M. I., Polini, M. & Tomadin, A. Quantum transport in Sierpinski carpets. Phys. Rev. B 93, 115428 (2016).

    Article ADS Google Scholar

  • Feng, Z. et al. Photonic Newton’s cradle for remote energy transport. Phys. Rev. Appl. 11, 044009 (2019).

    Article ADS Google Scholar

  • Tang, H. et al. Experimental quantum fast hitting on hexagonal graphs. Nat. Photonics 12, 754–758 (2018).

    Article ADS Google Scholar

  • Perets, H. B. et al. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008).

    Article ADS Google Scholar

  • Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

    Article ADS Google Scholar

  • Tang, H. et al. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv. 4, eaat3174 (2018).

    Article ADS Google Scholar

  • Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article ADS Google Scholar

  • Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Article ADS Google Scholar

  • Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photonics 7, 197–204 (2013).

    Article ADS Google Scholar

  • Naether, U. et al. Experimental observation of superdiffusive transport in random dimer lattices. New J. Phys. 15, 013045 (2013).

    Article ADS Google Scholar

  • Eichelkraut, T. et al. Mobility transition from ballistic to diffusive transport in non-Hermitian lattices. Nat. Commun. 4, 2533 (2013).

    Article ADS Google Scholar

  • Shang, J. et al. Assembling molecular Sierpiński triangle fractals. Nat. Chem. 7, 389–393 (2015).

    Article Google Scholar

  • Newkome, G. R. et al. Nanoassembly of a fractal polymer: a molecular ‘Sierpinski hexagonal gasket’. Science 312, 1782–1785 (2006).

    Article ADS MathSciNet Google Scholar

  • Rothemund, P. W., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004).

    Article Google Scholar

  • Kempkes, S. N. et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 15, 127–131 (2019).

    Article Google Scholar

  • Jia, S. & Fleischer, J. W. Nonlinear light propagation in fractal waveguide arrays. Opt. Express 18, 14409–14415 (2010).

    Article ADS Google Scholar

  • Osellame, R., Cerullo, G. & Ramponi, R. (eds) Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials Vol. 123 (Springer, 2012).

  • Xu, X.-Y. et al. A scalable photonic computer solving the subset sum problem. Sci. Adv. 6, eaay5853 (2020).

    Article ADS Google Scholar

  • Darázs, Z. & Kiss, T. Pólya number of the continuous-time quantum walks. Phys. Rev. A 81, 062319 (2010).

    Article ADS Google Scholar

  • Fleischmann, R., Geisel, T., Ketzmerick, R. & Petschel, G. Quantum diffusion, fractal spectra, and chaos in semiconductor microstructures. Physica D 86, 171–181 (1995).

    Article ADS MATH Google Scholar

  • Hameroff, S. & Penrose, R. Consciousness in the universe: a review of the ‘Orch OR’ theory. Phys. Life Rev. 11, 39–78 (2014).

    Article ADS Google Scholar

  • Hameroff, S. & Penrose, R. Orchestrated reduction of quantum coherence in brain microtubules: a model for consciousness. Math. Comput. Simul. 40, 453–480 (1996).

    Article Google Scholar

  • Gefen, Y., Aharony, A., Mandelbrot, B. B. & Kirkpatrick, S. Solvable fractal family, and its possible relation to the backbone at percolation. Phys. Rev. Lett. 47, 1771 (1981).

    Article ADS MathSciNet Google Scholar

  • Agliari, E., Blumen, A. & Mülken, O. Quantum-walk approach to searching on fractal structures. Phys. Rev. A 82, 012305 (2010).

    Article ADS Google Scholar

  • Quantum transport in fractal networks (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Rev. Leonie Wyman

    Last Updated:

    Views: 6448

    Rating: 4.9 / 5 (59 voted)

    Reviews: 90% of readers found this page helpful

    Author information

    Name: Rev. Leonie Wyman

    Birthday: 1993-07-01

    Address: Suite 763 6272 Lang Bypass, New Xochitlport, VT 72704-3308

    Phone: +22014484519944

    Job: Banking Officer

    Hobby: Sailing, Gaming, Basketball, Calligraphy, Mycology, Astronomy, Juggling

    Introduction: My name is Rev. Leonie Wyman, I am a colorful, tasty, splendid, fair, witty, gorgeous, splendid person who loves writing and wants to share my knowledge and understanding with you.