Mandelbrot, B. B. Fractals: Form, Chance and Dimension (W. H. Freeman, 1977).
ben-Avraham, D. & Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems (Cambridge Univ. Press, 2000).
Mandelbrot, B. B. The Fractal Geometry of Nature (W. H. Freeman, 1983).
Gouyet, J.-F. Physics and Fractal Structures (Springer, 1996).
Ivanov, P. C. et al. Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999).
Bandres, M. A., Rechtsman, M. C. & Segev, M. Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys. Rev. X 6, 011016 (2016).
Tanese, D. et al. Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential. Phys. Rev. Lett. 112, 146404 (2014).
Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).
Brady, R. & Ball, R. Fractal growth of copper electrodeposits. Nature 309, 225–229 (1984).
Goldberger, A. L. et al. Fractal dynamics in physiology: alternations with disease and aging. Proc. Natl Acad. Sci. USA 99, 2466–2472 (2002).
Bassingthwaighte, J. B., Liebovitch, L. S. & West, B. J. Fractal Physiology (Springer, 2013).
Peters, E. E. Fractal structure in the capital markets. Financ. Anal. J. 45, 32–37 (1989).
Dean, C. R. et al. Hofstadteras butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).
Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 350, 1231–1234 (2015).
Benedetti, D. Fractal properties of quantum spacetime. Phys. Rev. Lett. 102, 111303 (2009).
Karman, G., McDonald, G., New, G. & Woerdman, J. Fractal modes in unstable resonators. Nature 402, 138 (1999).
Dudley, J. M., Finot, C., Richardson, D. J. & Millot, G. Self-similarity in ultrafast nonlinear optics. Nat. Phys. 3, 597–603 (2007).
Rivera, J. A., Galvin, T. C., Steinforth, A. W. & Eden, J. G. Fractal modes and multi-beam generation from hybrid microlaser resonators. Nat. Commun. 9, 2594 (2018).
Ding, J., Fan, L., Zhang, S.-Y., Zhang, H. & Yu, W.-W. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve. Sci. Rep. 8, 1481 (2018).
Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).
Fazio, B. et al. Strongly enhanced light trapping in a two-dimensional silicon nanowire random fractal array. Light Sci. Appl. 5, e16062 (2016).
Gottheim, S., Zhang, H., Govorov, A. O. & Halas, N. J. Fractal nanoparticle plasmonics: the Cayley tree. ACS Nano 9, 3284–3292 (2015).
De Nicola, F. et al. Multiband plasmonic Sierpinski carpet fractal antennas. ACS Photonics 5, 2418–2425 (2018).
Zhu, L.-H. et al. Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal. Opt. Express 21, A313–A323 (2013).
Havlin, S. & Ben-Avraham, D. Diffusion in disordered media. Adv. Phys. 36, 695–798 (1987).
Blumen, A., Klafter, J., White, B. & Zumofen, G. Continuous-time random walks on fractals. Phys. Rev. Lett. 53, 1301 (1984).
Alexander, S. & Orbach, R. Density of states on fractals: fractons. J. Phys. Lett. 43, 625–631 (1982).
Orbach, R. Dynamics of fractal networks. Science 231, 814–819 (1986).
Ben-Avraham, D. & Havlin, S. Diffusion on percolation clusters at criticality. J. Phys. A Math. Gen. 15, L691 (1982).
Sokolov, I. M. What is the alternative to the Alexander–Orbach relation? J. Phys. A Math. Theor. 49, 095003 (2016).
Reis, F. D. A. & Voller, V. R. Models of infiltration into hom*ogeneous and fractal porous media with localized sources. Phys. Rev. E 99, 042111 (2019).
Mülken, O. & Blumen, A. Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502, 37–87 (2011).
Agliari, E., Blumen, A. & Mülken, O. Dynamics of continuous-time quantum walks in restricted geometries. J. Phys. A Math. Theor. 41, 445301 (2008).
Darázs, Z., Anishchenko, A., Kiss, T., Blumen, A. & Mülken, O. Transport properties of continuous-time quantum walks on Sierpinski fractals. Phys. Rev. E 90, 032113 (2014).
Volta, A. Quantum walks and trapping on regular hyperbranched fractals. J. Phys. A Math. Theor. 42, 225003 (2009).
van Veen, E., Yuan, S., Katsnelson, M. I., Polini, M. & Tomadin, A. Quantum transport in Sierpinski carpets. Phys. Rev. B 93, 115428 (2016).
Feng, Z. et al. Photonic Newton’s cradle for remote energy transport. Phys. Rev. Appl. 11, 044009 (2019).
Tang, H. et al. Experimental quantum fast hitting on hexagonal graphs. Nat. Photonics 12, 754–758 (2018).
Perets, H. B. et al. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008).
Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).
Tang, H. et al. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv. 4, eaat3174 (2018).
Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).
Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).
Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photonics 7, 197–204 (2013).
Naether, U. et al. Experimental observation of superdiffusive transport in random dimer lattices. New J. Phys. 15, 013045 (2013).
Eichelkraut, T. et al. Mobility transition from ballistic to diffusive transport in non-Hermitian lattices. Nat. Commun. 4, 2533 (2013).
Shang, J. et al. Assembling molecular Sierpiński triangle fractals. Nat. Chem. 7, 389–393 (2015).
Newkome, G. R. et al. Nanoassembly of a fractal polymer: a molecular ‘Sierpinski hexagonal gasket’. Science 312, 1782–1785 (2006).
Rothemund, P. W., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004).
Kempkes, S. N. et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 15, 127–131 (2019).
Jia, S. & Fleischer, J. W. Nonlinear light propagation in fractal waveguide arrays. Opt. Express 18, 14409–14415 (2010).
Osellame, R., Cerullo, G. & Ramponi, R. (eds) Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials Vol. 123 (Springer, 2012).
Xu, X.-Y. et al. A scalable photonic computer solving the subset sum problem. Sci. Adv. 6, eaay5853 (2020).
Darázs, Z. & Kiss, T. Pólya number of the continuous-time quantum walks. Phys. Rev. A 81, 062319 (2010).
Fleischmann, R., Geisel, T., Ketzmerick, R. & Petschel, G. Quantum diffusion, fractal spectra, and chaos in semiconductor microstructures. Physica D 86, 171–181 (1995).
Hameroff, S. & Penrose, R. Consciousness in the universe: a review of the ‘Orch OR’ theory. Phys. Life Rev. 11, 39–78 (2014).
Hameroff, S. & Penrose, R. Orchestrated reduction of quantum coherence in brain microtubules: a model for consciousness. Math. Comput. Simul. 40, 453–480 (1996).
Gefen, Y., Aharony, A., Mandelbrot, B. B. & Kirkpatrick, S. Solvable fractal family, and its possible relation to the backbone at percolation. Phys. Rev. Lett. 47, 1771 (1981).
Agliari, E., Blumen, A. & Mülken, O. Quantum-walk approach to searching on fractal structures. Phys. Rev. A 82, 012305 (2010).